Course description:
Scientific foundations for software engineering depend on the use of precise, abstract models and logics for characterizing and reasoning about properties of software systems. There are a number of basic models and logics that over time have proven to be particularly important and pervasive in the study of software systems. This course is concerned with that body of knowledge. It considers many of the standard models for representing sequential and concurrent systems, such as state machines, algebras and traces. It shows how different logics can be used to specify properties of software systems, such as functional correctness, deadlock freedom, and internal consistency. Concepts such as composition mechanisms, abstraction relations, invariants, non-determinism, and inductive and denotational descriptions are recurrent themes throughout the course.